If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-19x-52=0
a = 1; b = -19; c = -52;
Δ = b2-4ac
Δ = -192-4·1·(-52)
Δ = 569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{569}}{2*1}=\frac{19-\sqrt{569}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{569}}{2*1}=\frac{19+\sqrt{569}}{2} $
| 7x-19+x+5=2 | | -2(x+2)(x-1(x-2)=1 | | -3(u+9)=2u+8 | | 18y=42 | | -3y-8-2y=-2 | | 6+v/2=16 | | 2(5x+3)=5x+16 | | V-t=6 | | 2a+1/3=5 | | 3(3y+4)=48 | | 3(y-3)=-5 | | v−8=3v | | x+(x*0.03)=50 | | a+3/5=6 | | -0.05x^2+1.25x=0 | | -0.035x^2+1.19x+0.04945=0 | | -6−7f=-9f | | -7+10j=9j | | 25x+5=1/3x+2 | | 2/5x+5=1/3x+2 | | (3x+5)=(8) | | /12(6−x)+3x=12x−8 | | 7=(9x-8 | | 4x+24=48-2x | | 16n/2=24 | | P4x+24=48-2x | | 142+22+3x=180 | | 6x(11x+10)=0 | | 150-3x-150=180 | | 4=(3x-1)/2 | | 62-2x=78-3x | | x2=-15 |